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ABSTRACT 

Statistic, as a subject, does a hugely challenging job. It tries to quantify the uncertainty of 

this world. Dealing with uncertainty may often result in wrong conclusion. Sometimes it is 

inevitable but sometimes it is intentional. Some people may use statistics to suppress the 

fact or just to lie. This type of wrong practices goes with the ethical issues. We also observe 

that that even when we are trying to give a fair treatment to this subject, lack of knowledge 

could result in erroneous, funny and nonsense conclusions. In this paper, we would like to 

discuss these issues seriously. Firstly, we will talk about abuse of statistics in real world 

problems. Then, we try to find the factors which lead to the origination of nonsense 

statistics. Our main and foremost objective has been always tell the truth with statistics. 

This paper is written to focus on the problems and to suggest remedial measures at the same 

time from the misconception that ‘there are three kind of lies: lies, damn lies, and statistics’.  

 

Keywords: Abuse of statistics, misleading and nonsense statistics, randomization, sampling, 

modelling, inference, Lurking variable and Simpson’s Paradox, judgment, diagnostics, 

multi collinearity, outliers, robust statistics. 

 

1. INTRODUCTION 

According to Chernoff and Moses (1959), Statistics is the science of 

decision making in the face of uncertainty. For this reason there is a risk that 

decisions based on sophisticated statistical techniques may not hold in 

reality and few incidences ma y push  bac k Statisticians and Statistics 

teachers to the unfair impression that Statistics teaches how to lie with data. 

To quote the eminent writer Twain (1924), “The remark attributed to Disraeli 

would often apply with justice and force: ‘there are three kind of lies: 

lies, damn lies, and statistics’.” This may be the most unfair quotation ever 

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES 
 

Journal homepage: http://einspem.upm.edu.my/journal 



A.H.M. Rahmatullah Imon  & Keya Rani Das 

 

290 Malaysian Journal of Mathematical Sciences 
 

made against Statistics. The American humorist Esar (1943) commented 

“Statistics is the only science that enables different experts using the same 

figures to draw different conclusions.” According to Paul Velleman (2008), 

“Those who believe incorrectly that Statistics is solely a branch of 

Mathematics (and thus algorithmic), often see the use of judgment of 

Statistics as evidence that we do indeed manipulate our results.” We must 

realize the fact that Statistics lives on the empirical rather than the 

theoretical side of science. The availability of high speed computers and 

statistical software have freed statisticians from the grip of mathematicians 

to a greater extent, but it has created major problems the other way 

around, researchers who have a little knowledge about statistical methods can 

go to a computer and can create lots of senses and even more nonsense with 

the data. This problem has become so serious that many text books now 

contain sections on ‘Nonsense Statistics’. Conclusions drawn from a study 

are trust worthy only when appropriate design and correct sampling methods 

are used. We cannot rely on the results of hypothesis testing unless the 

validity of all underlying assumptions such as independence, normality and 

purity of observations (free from outliers) are met. In this paper we will 

discuss all these issues in a very non-technical fashion with lots of 

interesting examples showing the abuses of statistics in various areas of 

research. We also discuss the consequences of using these nonsense 

statistics in research. But statistics is not meant for it. Our main objective 

has been always to tell the truth with statistics.  

 

In Section 2, we give some real world examples of the abuse of 

statistics. This includes misleading and nonsense statistics. We often 

observe that this problem is caused because of lack of randomization and 

faulty sampling techniques which are discussed in Section 3. Another 

source of nonsense statistics is the inappropriate choice of models. The 

issue of modelling is discussed in Section 4. In Section 5, we discuss how 

the wrong design of inferential procedure can result in misleading 

conclusions. The entire inferential procedure is based on a series of 

standard assumptions. But in real world problems we often see that those 

assumptions do not hold and deviations from the standard assumption is a 

huge source of nonsense statistics. In Section 6, we discuss how to apply 

diagnostics to find problems with the assumptions. In Section 7, we 

discuss some possible remedies so that the subject itself can regain its 

prestige as a subject of searching the truth.  
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2. ABUSE OF STATISTICS: MISLEADING AND NONSENSE 

STATISTICS 

Disbelief in statistical techniques has been in existence since the 

development of this subject and the growing abuse of statistics has increased 

over the years and a number of books are now available (see Campbell 

(1979), Hooke (1983), Jaffe and Spirer (1987)) on this topic. In some cases, 

the misuse may be accidental. In others, it is purposeful and for the gain of the 

perpetrator. Vellman (2008) pointed out that a Google books search of 

“lies, damn lies, and statistics” turns up 495 books, and a general Google 

search finds “about 207,000” hits. A small (nonrandom) sample of these 

references shows that most are meant to suggest dishonest manipulations 

and interpretations. For example, at Bangladesh, there are lots of doubts 

regarding the figures related to food production, literacy rate, foreign 

investment etc. The politicians often mention some figures which are 

entirely baseless.  

 

In 1978 the government claimed that there are several areas in 

Bangladesh where not a single crime occurred. These areas were known as 

the so-called ‘zero crime zone’. In the late 80’s few ‘zero population 

growth’ zones were created and later it was found that most of the births in 

those areas are not registered there, they are registered in neighboring 

areas. It is generally believed that in 1990 census millions of people were 

uncounted just to show that ‘the population control program in Bangladesh 

is working successfully based on that the president of the country got an 

award from the United Nations. In a recently leaked document from 

‘WikiLeaks’ shows that the US Ambassador in New Delhi suspected that 

about 40 million Muslim population were deliberately undercounted in 

2000 census. The Election Commission of Bangladesh allegedly enlisted 

12 million fake voters in 2006 voter list which was corrected later after the 

verdict of Bangladesh High Court. These are a few examples of deliberate 

abuse of statistics but all of us must accept the fact that politicians, not the 

statisticians, are to blame for this. 

 

Sometimes statistical techniques can be used in such a way that 

they may hide some facts or could mislead common people. Unlike the 

previous examples there is nothing wrong in the data but they are presented 

in an ambiguous way. Here we present a couple of examples taken from 

Sullivan (2011). The first example shows the price of power in the US from 

2001 to 2007. The first graph shows that there is a dramatic increase in 

the price of power in years 2006-07 in comparison with the price in 

2001-02. But the second graph shows that the increase is steady. It’s 

unbelievable, but true that both of the above graphs are based on exactly the 
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same data but in the first graph its scale is changed to give a false 

impression that the price hike grows exponentially while the reality is that 

the growth is steady. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: The price of power in the US plots in different scales 

 

The second example shows deaths in road accidents in the US from 2001-05. 

The first graph puts lots of question marks to the road safety management in 

the US as the number of deaths tends to increase over the years. But the first 

graph is misleading because the number itself does not have any meaning 

unless we know how many motor vehicles are on the road or how many 

accidents occur every year. There will be no death if there were no car on the 

road! So the real information that we have to look at is the death rate as 

shown in the second graph and we feel now that the things are getting 

improved. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Plots of the number of deaths and death rates in the US 

 

With the growing applications of statistics we often see that statistical 

works are not being done by statistics practitioners, not the professionals, 

and in many occasions they are blindly applying statistical techniques 
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without knowing what they are doing. This kind of practice might lead the 

following nonsense findings: 

 

 Smoking reduces the risk of heart attacks 

 High calorie foods reduce age 

 Mental deformity in the U.K depends on who were the 

presidents of the U.S at that time 

 Watching television makes you live longer 

 Suicides of women fit a Poisson distribution 

 

Lurking variable and Simpson’s Paradox 
 

Here we show how a lurking variable could lead to a misleading conclusion. 

Lurking variable is a missing variable that contains very important and 

relevant information. Let us consider the following example. The University 

of California at Berkley was charged with having discriminated against 

women in their graduate admissions process for the fall quarter of 1973. 

Table 1 shows the respective numbers of men and women accepted and 

denied for two of the University’s Graduate Program (see Bickel, Hammel 

and O’Connel (1975)). 

 
TABLE 1: Overall acceptance of male and female students at the University of Berkley 

 
 Men Women 

Accepted 533 1

1

3 
Denied 665 3

3

6 
Total 1198 4

4

9  

From Table 1, we observe that 44.49% men are accepted in this program 

while the acceptance rate for women is only 25.17% and statistical test for the 

equality of two proportions yields a z value of 7.73 (p-value = 0.000) and 

Fisher’s exact test also yields a p-value = 0.000 supporting the claim of 

female rights activists claim that this University’s admission policy is 

biased to men. To understand this problem more clearly we now look at the 

respective numbers of men and women accepted and denied for two programs 

(denoted by A and F) separately as given in Table 2. 
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TABLE 2: Program-wise acceptance of male and female students at the University of Berkley 

 

 Men Women 

Accepted Denied Accepted Denied 

Program A 511 314 89 19 

Program F 22 351 24 317 

Total 533 665 113 336 

 

From Table 2, we compute the acceptance rate of both men and women in 

these two program and the stunning finding are presented Table 3. 

 
TABLE 3: Program-wise acceptance rate of male and female students at the  

University of Berkley 

 
 Program A Program F 

Men 61.94 5.90 

Women 82.40 7.04 

 

The above results clearly show that the women has a higher acceptance rate 

then men in both of the graduate programs though their acceptance rate is 

significantly less overall. This is a paradox which is known as Simpson’s 

paradox. This paradox occurs in the absence of a lurking variable (a missing 

variable that contains very important and relevant information). In our 

example the lurking variable is ‘the program applied to’. Further analysis will 

show that women attempted to enroll in a very higher rate (75.95% in 

comparison with men’s rate 31.47%) to a program which is much harder 

(having the acceptance rate only 6.89% while the other program has the 

acceptance rate 64.30%) and that is the main reason of their overall low 

acceptance rate. In similar situation the acceptance rates should be calculated 

by the weighted average not by simple average as done before. If the 

proportion of men and women applied for both of these two programs 

were the same, there would be no paradox. 

 

3. RANDOMIZATION, SAMPLING AND COLLECTION OF 

DATA 

In 1975, the Pepsi Beverages Company organized a challenge that 

takes the form of a taste test and was popularly known as Pepsi Challenge 

1975.   
 

Shoppers were encouraged to taste both colas, and then select 

which drink they prefer. Then the representative revealed the two bottles so 

the taster can see whether they preferred Coke or Pepsi. The results of the 



How to Tell the Truth with Statistics 

 

                                           Malaysian Journal of Mathematical Sciences 295 

 

test leaned toward a consensus that Pepsi was preferred by more Americans. 

Despite this claim, the market showed a different scenario. Americans used 

to buy Coke much more than Pepsi. Popular sources criticized the so 

called Pepsi challenge for the methods used. In Pepsi challenge, coca-cola 

was always served earlier and in a bit warmer than Pepsi. In general human 

being remembers more the last thing he/she tastes and most of the 

Americans like chilled cola. Although the shoppers were blind about the 

cola they tasted but the whole process lacked radomization and had a clear 

bias towards Pepsi. 

 

Many people may not realize that the randomness of the sample is 

very important. In practice, many opinion polls are conducted by phone, 

which distorts the sample in several ways, including exclusion of people who 

do not have phones, favoring the inclusion of people who have more than 

one phone, favoring the inclusion of people who are willing to participate in a 

phone survey over those who refuse, etc. Non-random sampling makes the 

estimated error unreliable. For this reason a random (probability) sampling 

is always welcome. Design of sampling and the determination of sample 

size are the most challenging steps of a random sampling procedure. 

Sample size determination takes into account several points: 

 

 What sampling is being used? 

 How much precision the experimenter wants? 

 How much margin of error one would allow in the inferential 

procedure? 

 

For a very large population (nationwide survey) a sample size 

between 1200 and 1300 (e.g. Gallup polls with 1000 samples for a country 

like the USA) could be enough (Newport, Saad and Moore, 1997) in a simple 

random sampling to infer within 3% margin of error (for 1% margin of error 

the required sample size for the USA is 10000) if the sampling can be done 

very carefully and efficiently. 

 

Another question might come in our mind, what to do if we fail to 

obtain a random sample? Can we not use any statistical techniques there? 

Researchers can use exploratory data analysis (EDA) techniques if the 

sample is not random. Researchers should employ very recent and 

advanced graphical displays to make the data more representative. If the 

data set itself is interesting, simple statistics like f requency distribution, 

percentage, proportion, rates etc could be interesting. For example, a 

nonrandom sample showing that in the USA, African Americans have 3 times 

higher unemployment rate than Whites could be very useful information. 

When samples are not random we have to be a bit careful in drawing 
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conclusions. We should use words like ‘more or less likely’ instead of using 

the word significant or insignificant. 

 

In social science study it is a very common practice to prepare 

questionnaire in such a way that the answers from the respondents are 

qualitative. It is also a common fashion to collect qualitative data even 

when the quantitative data are available. The advantage of this type of 

practice is ease of collecting data. But the main disadvantage of this 

practice is that it causes information loss and may end up with misleading 

inference. Let us consider the following example as given in Table 4. We 

are interested to see whether students’ GPA depends on the income of their 

parents. 

 
Table 4: Students’ GPA and parents’ income data 

 

Parent’s income 

GPA 

Low Mid High Total 

Low 4 (2.4) 3 (3.6) 1 (2) 8 

Mid 1 (2.1) 5 (3.15) 1 (1.75) 7 

High 1 (1.5) 1 (2.25) 3 (1.25) 5 

Total 6 9 5 20 

 

The calculated value of  2  this data is 6.96 (p-value 0.276) and 

we may conclude that student’s performance in exam has no significant 

relation with their parents income.  

 

Now we replicate the data twice. The replicated data are presented in 

Table 5. The calculated value of  2  for this data is 13.92 (p-value 0.015) 

and we may conclude that student’s performance in exam has a significant 

relationship with their parents income. Since both of the variables are ordinal 

(not qualitative only) we should analyze the relationship by ordinal 

concordances or discordances as suggested by Agresti (1984, 2002), 

Simonoff (2003) or others.  

 
TABLE 5: Students’ GPA and parents’ income replicated data 

 

Parent’s income 

GPA 

Low Middle High Total 

Low 8 (4.8) 6 (7.2) 2 (4) 16 

Mid 2 (4.2) 10 (6.3) 2 (3.5) 14 

High  2 (3.0) 2 (4.5) 6 (2.5) 10 

Total 12 18 10 40 
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But the interesting feature of this particular problem is that we know the 

exact numerical values of both of these two variables. Let us do the same 

analysis using the correlation coefficient. 
 

 

  
n = 20, r = 0.797, t = 5.598 (0.000) n = 40, r = 0.797, t = 8.134 (0.000) 

 
Figure 3: Scatter plot of original and replicated students’ GPA and parents’ income data 

 

Replication of data should not change the relationship of the variables and 

we see this in Figure 3.1 and in both of these two correlations. So this 

example shows the limitation of using simple contingency analysis although 

that is a hugely popular technique in social science research. 

 

4. MODELLING 

Modeling is an essential part of the entire statistical procedure. The 

importance of a correct model is huge as the entire process is wrong if the 

model is wrong. To quote Velleman (2008), John Tukey taught that 

Statistics is more a science than it is a branch of Mathematics. For a 

mathematics theorem to be elegant, it is sufficient that it be beautiful and 

true. But Statistics is held to the additional standard imposed by science. A 

model for data, no matter how elegant or correctly derived, must be 

discarded or revised if it doesn’t fit the data or when new or better data are 

found and it fails to fit them. Our reliance on model often suffers a setback 

from the experience of Box (1976).  
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Figure 4: Scatter plot of Anscombe’s quartet data 

 

To illustrate this problem let us consider Anscombe (1973)’s quartet. Figure 

4 clearly shows that the four graphs are totally different but if we model 

the relationship of Y on X  by a linear regression model, the lease squares 

method produce exactly same results for all regression statistics as shown 

in Table  6. 

 
TABLE 6: Regression summary statistics of Anscombe’s quartet data 

 

Statistics Model I Model II Model III Model IV 

Intercept 3.0 3.0 3.0 3.0 

Slope 0.5 0.5 0.5 0.5 
2R  0.667 0.667 0.667 0.667 

t(p-value) 4.24 (0.002) 4.24 (0.002) 4.24 (0.002) 4.24 (0.002) 

SST 41.23 41.23 41.23 41.23 

SSR 27.49 27.49 27.49 27.49 

MSE 13.74 13.74 13.74 13.74 

 
 

Table 7 presents (see Kopits and Cropper (2003)) the change in traffic fatality 

risk in various developed and developing countries. Here the change in 

traffic fatality risk (deaths/1 0,000 persons) from 1975-1998 are presented. 

 

 

 

 

 

 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/e/ec/Anscombe%27s_quartet_3.svg


How to Tell the Truth with Statistics 

 

                                           Malaysian Journal of Mathematical Sciences 299 

 

 

TABLE 7: Change in traffic fatality risk data 

 

Country 
% 

Change 
Country 

% 

Change 
Country 

% 

Change 

Canada -63.4 France -42.6 Malaysia 44.3 

Hong Kong -61.7 Italy -36.7 India 79.3 

Finland -59.8 New 

Zealand 

-33.2 Sri Lanka 84.5 

Austria -59.1 Taiwan -32.0 Lesotho 192.8 

Sweden -58.3 United 

States 

-27.2 Colombia 237.1 

Israel -49.7 Japan -24.5 China 243.0 

Belgium -43.8   Botswana 383.8 

 

From this table we see that the change is positive for Malaysia that means 

the fatality risk is increasing there. But Figure 5 based on data provided by 

Malaysian  Institute of Road Safety shows that the fatality risk is declining. 

 

 
 

Figure 5: Malaysian traffic fatality risk data from 1996-2006 

 

 
 

Figure 6: Malaysian traffic fatality risk data from 1986-2006 
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Figure 6 shows that both of the above claims are correct. Fatality risk in 

Malaysia increased up to 1996 and since then there is a declining pattern. A 

structural break has occurred in 1996 and hence the linear model is no longer 

appropriate for this data. 

 

5. INFERENCE AND JUDGEMENT 

Sometimes setting up null and alternate hypotheses could be a key 

inferential issue. Suppose a school has developed a new teaching method so 

that the students perform better in their exams. For such a problem, many text 

books set up hypotheses simultaneously in this way: 

 

(a) OldNewH  :0  vs OldNewH  :0  

(b) OldNewH  :0  vs OldNewH  :0  

(c) OldNewH  :0  vs OldNewH  :0  

 

To see the effectiveness of the new method they applied both old 

and new methods to two groups of students each of size 10 and obtained 

the following results: New teaching method: Average score 70.0 with a 

standard deviation 6.32 and Old teaching method: Average score 73.0 with a 

standard  deviation 7.07. If we employ the equality of two mean tests, the test 

statistic is 

 

 

   
 

222
~

2

11







 n

OldNew

OldOldNewNew

OldNew t

nn

snsn

xxn
t  

 

where n = Newn + Oldn . For this data the value of the test statistic  t is – 2.0. 

 

For the set of hypotheses (a), the critical region at the 5% level 

of significance is given by : 2.10 2.10.t t t   Since the value of the test 

statistic does not fall in the critical region, we may accept the null hypothesis 

and conclude that the new teaching method is similar to the old teaching 

method. For the set of hypotheses (b), the critical region at the 5% level of 

significance is given by : 1.73.t t   
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Since the value of the test statistic does not fall in the critical region, 

we may accept the null hypothesis that the new teaching method is 

similar to the old teaching method. But someone may be skeptical about 

the new teaching method as there is empirical evidence that students with 

the new method is getting lower average score than the old method. So one 

may consider the set of hypotheses given in (c). In this case the critical 

region at the 5% level of significance is given by t: t < 1.73.  

 

Those who believe incorrectly that Statistics is solely a branch of 

Mathematics (and thus algorithmic), often see the use of judgment 

Statistics as evidence that we do indeed manipulate our results. It is in the area 

of hypothesis testing that we often see people apply statistics methods 

blindly, hoping for that statistically significant p <0.05, but neglecting to 

employ their judgment.  

 

In general 0.8r   is considered as a very high correlation coefficient, 

but when n = 3, the value of the t-statistic for testing the significance of the 

correlation coefficient is 1.333 (p-value = 0.410). So the correlation is not 

significant at all. Again r = 0.1 seems to provide very low correlation. But 

when n = 2000, the value of the t-statistic is 4.49 (p-value = 0.000) which 

shows that this correlation is highly significant at any level. 

 

6. DIAGNOSTICS 

Each and every simple step in statistical inference is guided by some 

kind of assumptions whose existences are essential for a valid inferential 

statement. For example, all four major test statistics z, t, 2  and F arc valid 

only when the sample observations come from a normal distribution. Tukey 

(1960) mentioned a tacit hope in ignoring deviations from the ideal model 

was that they would not matter; that statistical procedures which were 

optimal under the strict model would still be approximately optimal under 

the approximate model. Unfortunately, it turned out that this hope is often 

drastically wrong; even mild deviations often have much larger effects 

than were anticipated by most statisticians.’  

 

Diagnostics are a set of measures which are designed to find 

problems with the assumptions. Most of the diagnostic techniques in 

statistics are guided to find outliers in the data. The term ‘outlier’ came 

from astrophysics to distinguish planets which are ‘outlying’ in our solar 

system. The term ‘outlier’ got popularity in statistics in the middle of the 

last century to solve a court case in England. In 1949, in the case of Hadlum 

vs Hadlum, Major Hadlum appealed against the failure of an earlier petition 
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of divorce. His claim was based on an alleged adultery by Mrs. Radium, 

the evidence for which consisted of the fact that Mrs. Hadlum gave birth 

to a child which was 349 days later than when Major Hadlum had left 

the country to serve the nation during the World War II. The appeal judge 

rejected the appeal. In other similar cases conflicting views had prevailed. In 

Mr. T vs Mrs. T case also in 1949 the court had ruled that 340 days was 

impossible based on the fact that the average gestation period for the human 

female is 280 days. A much earlier case resurfaced at about the same time. 

In 1921, Mr. Gaskil failed in a petition for divorce on the grounds of 

adultery based on an absence of 331 days from home. In 1951, the House of 

Lords had ruled that the limit is 360 days based on a huge survey 

conducted by the British Medical Association for a sample of 13634 British 

Births. The concept of outliers in a data set is considered to be as old as 

the subject of statistics.  

 

A more formal definition of outlier came from Barnett and Lewis 

(1994) said that we shall define an outlier in a set of data to be an 

observation (or subset of observations) which appears to be inconsistent 

with the remainder of that set of data. Hampel et al. (1986) claim that a 

routine data set typically contains about 1-10% outliers, and even the 

highest quality data set cannot be guaranteed free of outliers. Let us 

consider a set of climate data which was collected by the Indian Statistical 

Institute (ISI) Calcutta. The data contain rainfall update from 1990 to 2003 

in Bihar, India. It also contains several variables, such as evaporation 

(mm), maximum temperature (°C) , minimum temperature (°C), humidity (%) 

at 8:30 am and humidity (%) at 4:30 pm. Figure 7 is taken from Imon et al. 

(2012). To get a better view, we use the brushing command in S-PLUS to 

select a portion of data where some kind of irregularity is visible more 

clearly. Figure 8  shows that on few days recorded minimum temperature 

was much higher than maximum temperature which is simply impossible. 
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Figure 7: Scatter plot of maximum and minimum temperature of Bihar data 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: Brushed values of Bihar temperature data 

 

The consequences of outliers are well-known to statisticians. It can create 

huge interpretative problems and that is why outlier detection is so 

important in Statistics. Let us consider the Belgian fire claim data taken 

from Rousseeuw and Leroy (1987).  
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Figure 9: Scatter plot of Belgian fire claim data with and without outlier 
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There exists an outlier in this data. Figure 9 presents the scatter plot of 

Belgian fire claim data with and without an outlier. If we keep the 

observation in, we obtain a negative slope for the line. When we remove 

that point from the data, the least squares line show an upward slope. So it 

is a huge problem for the insurance company to set its target for the next year.  

 

Our next example is the water flow data taken from Chattarjee and Hadi 

(2006). Figure 10 shows how a single outlier can destroy the goodness-of-fit 

of the least squares line. 

 

  
R2 = 0.945 R2 = 0.002 

 
Figure 10: Scatter plot with goodness-of-fit for water flow data with and without outlier 

 

The data presented in Table 8 is artificial in nature which is designed to show 

the effect of multicollinearity on the regression coefficients (Montgomery et 

al. (2006)). 

 
TABLE 8: Montgomery et al. (2006) collinearity data 

 
Y X1 X2 

1 2 1 

5 4 2 

3 5 2 

8 6 4 

5 8 4 

3 10 4 

10 11 6 

 

When we fit Y on X1 only we obtain the least squares line as 

 

Ŷ  = 1.835 + 0.463 X1 

But this line becomes 

 

Ŷ  = 1.835 – 1.222 + 0.463 X1 + 3.649 X2 
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when Y is fitted on X1 and X2. The above two fits clearly show that the sign 

of the coefficient of X1 change which is known as the wrong sign problem.  
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Figure 11: Scatter plot of X1 versus  X2 for Montgomery et al. (2006) data 

 

For a possible explanation we plot two explanatory variables against one 

another and it shows a linear relationship with a correlation coefficient 

0.945 with p-value 0.000. This finding confirms our suspicion that multi 

collinearity causes wrong sign problem. 

 

 

7. STATISTICS AND TRUTH 

Our first inference was ‘smoking reduces risk of heart attacks’ 

(Mullet, 1976). In a regression fit for the prediction of heart disease of British 

people the coefficient of smoking had a significant negative meaning smoking 

helps reducing heart disease. But after a careful investigation it was 

observed that in the model there was another variable, ‘drinking’ which had 

a very high correlation with smoking. So the entire analysis suffered from 

‘multicollinearity’ resulting in the so-called ‘wrong sign’ problem.  

 

High calorie foods reduce age was our next finding obtained by M.Sc. 

project student in the Department of Statistics of an university in 2002. The 

researcher established a regression line in the form 

 

Age = (…) – (...) Calories 

we obtain 

 

Calories = (…) – (...) Age 

 

Now this makes sense. As we grow older we reduce taking high calorie foods. 
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The next inference was ‘watching television makes you live longer.’ This 

inference was drawn after observing that nations with many TV sets have 

higher life expectancy (see COMAP (2006)). Rich nations have more TV 

sets then poor nations. Rich nations also have longer life expectancy 

because they offer better nutrition, clean water and better health care. We 

ignored few lurking variables here  and  ended up with nonsense inference. 

 

Montgomery et al. (2006) present an example where it shows that ‘mental 

deformity in the U.K. depends on who were the presidents of U.S. at that 

time. A regression line of the number of certified mental defectives per 

10,000  in the U.K. on the First name of the U.S. president from the years 

1924-1937 produced the following output: 
 

Est. Mental Defectives in U.K. =  – 26.4 + 5.9 U.S. President 

 

with  t = 8.996 (p-value 0.000) and R
2
 = 0.871.  

 

Our final example is taken from Shil and Debnath (2001) as presented in 

Table 9 which contained number of suicides of 1096 women in 8 cities of a 

country during 14 years. The authors claimed that the data fit a Poisson 

distribution. 

 
Table 9: Shil and Debnath’s (2001) suicide data 

 

No. of 

Suicides 
0 1 2 3 4 5 6 7 

Frequency 364 376 218 89 33 13 2 1 

 

Velleman (2008) rightly said one can wield the tools of Statistics to 

mislead. After all, Statisticians do not claim to know things they cannot 

know. Instead, for example, they offer an interval of plausible values for an 

unknown parameter. Not satisfied with that, we spend more effort describing 

exactly how uncertain we are that even that interval covers the true value and 

just what we must assume about unknown and unknowable features of the 

world for those estimates to be correct. Statisticians are evidently taking 

great care to be honest, and readily admit their uncertainty. Liars usually 

assert their lies confidently in their striving to be believed and when a 

statistician’s conclusion turns out to be wrong, the error is not seen as 

deliberate deception.  
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Another random sample may yield a different answer, but that isn’t 

blamed on the statistician as a failure of ethical data collection or analysis. 

On the other hand we often see the life-or-death importance of data analysis 

and statistics. Hines (2007) showed that how one of the leading medical 

schools of the world, University of California San Francisco, ignored 

analyzing data that they regularly collect from their patients and later 

shockingly noticed that heart attack patients spent almost three hours on 

average at UCSF before their arteries were unblocked. Some had their 

electrocardiogram languish on a clipboard in the emergency room while 

doctors dealt with other patients. Although UCSF was faster than most 

hospitals, but its delays were still almost certainly killing some people and 

leaving others disabled because patients have the best chance of recovery 

if their arteries are opened within two hours, research has shown.  

 

8. CONCLUSION 

In practice we observe numerous occasions where statistical 

procedures give misleading conclusions. Sometimes it is done intentionally, 

so we must teach students regarding ethical issues while teaching statistics. 

But faulty design and sampling techniques, inappropriate modeling, selection 

of wrong inferential techniques and violation of standard assumptions are 

mainly responsible for nonsense statistics. If we are careful regarding these 

issues and use more nonparametric and robust statistical methods we can 

easily overcome many of these problems.  
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